Hexadecimal

Memory Dump

One good article generates another. This is a nice companion to one of last year's.

Kudos to Mark Borgerson. His 6800 assemblylanguage program for fast loading machine-language
programs as it appeared in the February 1977 issue of Kilobaud ("Cut 6800 Programming Time with this Extraor-
dinary Program," p. 104) works extremely well. I reassembled that program to relocate it to a convenient

Program listing.

on any 6800 system using MIKBUG，or one of the newer replacements for MIKBUG．

I have used the same basic dump technique as in the Altair program，but with input／output routines modi－ fied for MIKBUG．I have added some prompt messages at the beginning and have used Mr．Borgerson＇s tech－ nique of relocating the stack pointer to restart the program by simply typing G on the terminal．

To use the program after loading，set the program counter at A048－A049 to 3F25（or the appropriate starting address if you have relocated the program）and use the MIKBUG G command to start execution．The pro－ gram title will be printed， followed by a prompt mes－ sage，FIRST BYTE TO PRINT．The address of the first byte to dump is entered and the computer responds with LAST BYTE TO PRINT．The address of the last byte is entered and the dump begins．The display format consists of 16 bytes per line with the address of the first byte being printed at the left（see Fig．1）．

There is no limit to the amount of memory that can be dumped at one time；any number of bytes from one to 65 K can be dumped．（Hope you have a lot of paper for the larger numbers！）A word of caution：The address of the first byte to be dumped must be less than that of the last．If this is not the case，all memory locations except the region between the two ad－ dresses will be dumped！If both addresses are the same， only one byte will be dis－ played．

The dump shown in Fig． 1 is a dump of the dump pro－ gram itself．This should prove to be a valuable debugging program；especially if your program has＂gone to that never－never land known only to CPUs and covered its tracks in the process，＂to quote another Kilobaud author．${ }^{\text {E }}$

FDB $\quad \$ 3 F 20$
00101
END

OUTEEE E1D 1
OUT 2H EOBF
BADDR Eø47

OUTS	EØCC
OUT 4 HS	EØC8
MONIT	EØE3
TEMP	$3 F 2 \emptyset$
LSTBYT	$3 F 22$
COUNT	$3 F 24$
GO	$3 F 25$
AA	$3 F 2 B$
ADRS1	$3 F 38$
BB	$3 F 4 D$
GET	$3 F 58$
CC	$3 F 63$
ADRS2	$3 F 70$
CRLF	$3 F 79$
NXTBYT	$3 F 94$
JMONIT	$3 F A 8$
GETADR	$3 F A B$
TITLE	$3 F B 7$
FIRST	$3 F C F$
LAST	$3 F E 3$

[^0]Fig．1．Dump of the dump．

[^0]: ＊G HEXADECIMAL MEMORY DUMP
 FIRST BYTE TO PRINT ？3F2D LAST BYTE TO PRINT ？ $3 F F 5$

 3F3ø 27 Ø6 BD E1 D1 ø8 20 F3 86 加 BD E1 D1 86 ØA BD
 $3 F 4$ E1 D1 86 Øø BD E1 D1 BD E1 D 1 CE $3 F$ CF A6 0011

 $3 F 7 \varnothing$ SD 39 Ø 8 FF $3 F 22$ FE $3 F 2 \varnothing 86$ DD BD E1 D1 86 日A

 3F9ø C8 FE $3 F 20$ 7A $3 F 2427$ Eの BD EØ CC A6 Øø BD Eø

 $3 F F D \quad 5052494 E 54 \quad 2 E$

